Add like
Add dislike
Add to saved papers

Modeling and optimization of thermal conductivity and viscosity of MnFe 2 O 4 nanofluid under magnetic field using an ANN.

Scientific Reports 2017 December 13
This research investigates the applicability of an ANN and genetic algorithms for modeling and multiobjective optimization of the thermal conductivity and viscosity of water-based spinel-type MnFe2 O4 nanofluid. Levenberg-Marquardt, quasi-Newton, and resilient backpropagation methods are employed to train the ANN. The support vector machine (SVM) method is also presented for comparative purposes. Experimental results demonstrate the efficacy of the developed ANN with the LM-BR training algorithm and the 3-10-10-2 structure for the prediction of the thermophysical properties of nanofluids in terms of the significantly superior accuracy compared to developing the correlation and employing SVM regression. Moreover, the genetic algorithm is implemented to determine the optimal conditions, i.e., maximum thermal conductivity and minimum nanofluid viscosity, based on the developed ANN.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app