Add like
Add dislike
Add to saved papers

Targeting CDK1 and MEK/ERK Overcomes Apoptotic Resistance in BRAF-Mutant Human Colorectal Cancer.

The BRAF V600E mutation occurs in approximately 8% of human colorectal cancers and is associated with therapeutic resistance that is due, in part, to reactivation of MEK/ERK signaling cascade. Recently, pathway analysis identified cyclin-dependent kinase 1 (CDK1) upregulation in a subset of human BRAF V600E colorectal cancers. Therefore, it was determined whether CDK1 antagonism enhances the efficacy of MEK inhibition in BRAF V600E colorectal cancer cells. BRAF V600E colorectal cancer cell lines expressing CDK1 were sensitized to apoptosis upon siRNA knockdown or small-molecule inhibition with RO-3306 (CDK1 inhibitor) or dinaciclib (CDK1, 2, 5, 9 inhibitors). Combination of RO-3306 or dinaciclib with cobimetinib (MEK inhibitor) cooperatively enhanced apoptosis and reduced clonogenic survival versus monotherapy. Cells isogenic or ectopic for BRAF V600E displayed resistance to CDK1 inhibitors, as did cells with ectopic expression of constitutively active MEK CDK1 inhibitors induced a CASP8 -dependent apoptosis shown by caspase-8 restoration in deficient NB7 cells that enhanced dinaciclib-induced CASP3 cleavage. CDK inhibitors suppressed pro-CASP8 phosphorylation at S387, as shown by drug withdrawal, which restored p-S387 and increased mitosis. In a colorectal cancer xenograft model, dinaciclib plus cobimetinib produced significantly greater tumor growth inhibition in association with a caspase-dependent apoptosis versus either drug alone. The Cancer Genome Atlas (TCGA) transcriptomic dataset revealed overexpression of CDK1 in human colorectal cancers versus normal colon. Together, these data establish CDK1 as a novel mediator of apoptosis resistance in BRAF V600E colorectal cancers whose combined targeting with a MEK/ERK inhibitor represents an effective therapeutic strategy. Implications: CDK1 is a novel mediator of apoptosis resistance in BRAF V600E colorectal cancers whose dual targeting with a MEK inhibitor may be therapeutically effective. Mol Cancer Res; 16(3); 378-89. ©2017 AACR .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app