Add like
Add dislike
Add to saved papers

Mutation in populations governed by a Galton-Watson branching process.

A population genetics model based on a multitype branching process, or equivalently a Galton-Watson branching process for multiple alleles, is presented. The diffusion limit forward Kolmogorov equation is derived for the case of neutral mutations. The asymptotic stationary solution is obtained and has the property that the extant population partitions into subpopulations whose relative sizes are determined by mutation rates. An approximate time-dependent solution is obtained in the limit of low mutation rates. This solution has the property that the system undergoes a rapid transition from a drift-dominated phase to a mutation-dominated phase in which the distribution collapses onto the asymptotic stationary distribution. The changeover point of the transition is determined by the per-generation growth factor and mutation rate. The approximate solution is confirmed using numerical simulations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app