Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Uncoordinated expression of DNA methylation-related enzymes in human cancer.

Epigenetics & Chromatin 2017 December 13
BACKGROUND: In addition to the important roles played by 5-methylcytosine (5mC), emerging evidence suggests that 5mC derivatives, such as 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC), also exhibit regulatory functions in physiological and pathological processes. Four cytosine modifications (5mC, 5hmC, 5fC and 5caC) are produced and erased by a cyclic enzymatic cascade mediated by DNA methyltransferases (DNMTs), ten-eleven translocation (TET) family enzymes and thymine DNA glycosylase (TDG). Stable maintenance of the DNA methylation profile is important for normal cell homeostasis, but its underlying mechanisms are largely unknown.

METHODS: The expression levels of 7 DNA methylation-related enzymes from normal mouse tissues were assessed using quantitative real-time RT-PCR (qRT-PCR). The gene expression data and related information of human normal tissues and tumor tissues were obtained from the Genotype-Tissue Expression (GTEx) and the Cancer Genome Atlas (TCGA), respectively.

RESULTS: We observed significant positive correlations among the expression levels of DNA methylation-related enzymes in various mice and human normal tissues. By contrast, we found significantly decreased correlations in various tumor tissues compared with their corresponding normal tissues. Furthermore, we also found that alterations in these correlations are associated with several clinicopathological characteristics of cancer patients.

CONCLUSIONS: These observations suggest that uncoordinated expression of DNA methylation-related enzymes is another epigenetic hallmark of cancer. Our work provides important insights into an additional regulatory layer of the DNA methylation maintenance machinery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app