Add like
Add dislike
Add to saved papers

Differential Effects of sEH Inhibitors on the Proliferation and Migration of Vascular Smooth Muscle Cells.

Epoxyeicosatrienoic acid (EET) is a cardioprotective metabolite of arachidonic acid. It is known that soluble epoxide hydrolase (sEH) is involved in the metabolic degradation of EET. The abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) play important roles in the pathogenesis of atherosclerosis and restenosis. Thus, the present study investigated the effects of the sEH inhibitor 12-(((tricyclo(3.3.1.13,7)dec-1-ylamino)carbonyl)amino)-dodecanoic acid (AUDA) on platelet-derived growth factor (PDGF)-induced proliferation and migration in rat VSMCs. AUDA significantly inhibited PDGF-induced rat VSMC proliferation, which coincided with Pin1 suppression and heme oxygenase-1 (HO-1) upregulation. However, exogenous 8,9-EET, 11,12-EET, and 14,15-EET treatments did not alter Pin1 or HO-1 levels and had little effect on the proliferation of rat VSMCs. On the other hand, AUDA enhanced the PDGF-stimulated cell migration of rat VSMCs. Furthermore, AUDA-induced activation of cyclooxygenase-2 (COX-2) and subsequent thromboxane A2 (TXA₂) production were required for the enhanced migration. Additionally, EETs increased COX-2 expression but inhibited the migration of rat VSMCs. In conclusion, the present study showed that AUDA exerted differential effects on the proliferation and migration of PDGF-stimulated rat VSMCs and that these results may not depend on EET stabilization.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app