Add like
Add dislike
Add to saved papers

Synthesis and biological evaluation of coumarin derivatives containing imidazole skeleton as potential antibacterial agents.

Emergence of multidrug-resistant bacteria causes an urgent need for new generation of antibiotics, which may have a different mechanism of inhibition or killing action from the existing. Here, we report on the design, synthesis, and biological evaluation of thirty-nine coumarin derivatives in order to solve the antibacterial resistance by targeting at the inhibition of biosynthesis pathway of fatty acids. Their antibacterial activities against Escherichia coli, Staphylococcus aureus, Streptococcus agalactiae, and Flavobacterium cloumnare are tested and action mechanism against the key enzyme in bacterial fatty acid synthesis pathway are studied. The results show that compounds 13 and 18 have potent and broad spectrum antimicrobial activity. In addition, 9, 14 and 19 show eminent antimicrobial efficacy toward S. aureus, S. agalactiae, and F. cloumnare. Mechanistically, coumarin derivatives display the antibacterial activity via the control of FabI and FabK function. The structure-activity relationship analysis indicate that the length of linker and imidazole substitute group could significantly influence the antimicrobial activity, as well as the inhibitory activity against FabI and FabK. The structural optimization analysis of coumarin suggest that derivatives 9, 13, 14, 18 and 19 could be a viable way of preventing and controlling bacteria and considered as promising lead compounds for the development of commercial drugs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app