Add like
Add dislike
Add to saved papers

Quadratic Response Properties from TDDFT: Trials and Tribulations.

We report on the efficient turbomole implementation of quadratic response properties within the time-dependent density functional theory (TDDFT) context that includes the static and dynamic dipole hyperpolarizability, ground-to-excited-state two-photon absorption amplitudes (through a single residue) and state-to-state one-photon absorption amplitudes (through a double residue). Our implementation makes full use of arbitrary (including non-Abelian) point-group symmetry as well as permutational symmetry and enables the calculation of nonlinear properties with hybrid density functionals for molecules with hundreds of atoms and thousands of basis functions at a cost that is a fixed multiple of the cost of the corresponding linear properties. Using the PBE0 hybrid density functional, we show that excited-state absorption spectra computed within the pseudowavefunction approach contain the qualitative features of transient absorption spectra tracking excimer formation in perylene diimide dimers, two-photon absorption cross sections for a series of highly twisted fused porphyrin chains are semiquantitatively reproduced, and the computed dynamic hyperpolarizability of several calix[4]arene stereoisomers yield simulated hyper-Raleigh scattering signals consistent with experiment. In addition, we show that the incorrect pole structure of adiabatic TDDFT properties can cause incorrect excited-state absorption spectra and overly resonant hyperpolarizabilities, and discuss possible remedies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app