JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Structural and Computational Insight into the Catalytic Mechanism of Limonene Epoxide Hydrolase Mutants in Stereoselective Transformations.

Directed evolution of limonene epoxide hydrolase (LEH), which catalyzes the hydrolytic desymmetrization reactions of cyclopentene oxide and cyclohexene oxide, results in (R,R)- and (S,S)-selective mutants. Their crystal structures combined with extensive theoretical computations shed light on the mechanistic intricacies of this widely used enzyme. From the computed activation energies of various pathways, we discover the underlying stereochemistry for favorable reactions. Surprisingly, some of the most enantioselective mutants that rapidly convert cyclohexene oxide do not catalyze the analogous transformation of the structurally similar cyclopentene oxide, as shown by additional X-ray structures of the variants harboring this slightly smaller substrate. We explain this puzzling observation on the basis of computational calculations which reveal a disrupted alignment between nucleophilic water and cyclopentene oxide due to the pronounced flexibility of the binding pocket. In contrast, in the stereoselective reactions of cyclohexene oxide, reactive conformations are easily reached. The unique combination of structural and computational data allows insight into mechanistic details of this epoxide hydrolase and provides guidance for future protein engineering in reactions of structurally different substrates.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app