JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Quantitative evaluation of graded hindlimb ischemia based on pharmacokinetic modelling and hemodynamic analysis of indocyanine green.

OBJECTIVE: Accurate evaluation of the degree of hindlimb ischemia is challenging but essential for the diagnosis and treatment of peripheral vascular insufficiency. The aim of the study is to apply a multiparametric method for the quantitative estimation of mouse models with different degrees of hindlimb ischemia based on a dynamic fluorescence imaging-based strategy.

APPROACH: An adjustable hydraulic occluder was placed around the thigh root of one hindlimb to induce six different degrees of hindlimb ischemia. Five parameters were extracted to quantitatively evaluate the degree of ischemia, including perfusion rate (PR) and perfusion vascular density (PVD) from a mathematical model of indocyanine green (ICG) pharmacokinetics, rising time (T rise ), blood flow index (BFI) and mean fluorescence intensity (MFI) from time-series analysis of ICG hemodynamics.

MAIN RESULTS: The results showed that the normalized PR and BFI decreased while the normalized T rise increased progressively with the degree of ischemia. The normalized PVD and MFI first increased and then decreased with the degree of ischemia. High correlation was observed between the degree of ischemia and the arterial oxygen saturation which was measured by an oximeter.

SIGNIFICANCE: The results of this work demonstrated that PR, BFI and T rise can be used for the quantitative and comprehensive evaluation of graded hindlimb ischemia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app