Add like
Add dislike
Add to saved papers

Available forms of nutrients and heavy metals control the distribution of microbial phospholipid fatty acids in sediments of the Three Gorges Reservoir, China.

The construction of the Three Gorges Reservoir (TGR) as well as the development of local industry and agriculture not only had tremendous impacts on the environment but also affected human health. Although water, soil, and air in the TGR have been well studied for environmental risk assessment, very little information is available on benthic sediments and microorganisms. In this study, sedimentary samples were collected along the main stream of the TGR to examine microbial phospholipid fatty acids (PLFA) and relevant variables (e.g., nutrients and heavy metals) after the full operation of the TGR. The results showed that there were prominent trends (increase or decrease) of sedimentary PLFAs and properties from downstream to upstream. Bacteria-specific PLFA decreased toward the dam, while fungi-specific PLFA did not show any significant trend. The PLFA ratio of fungi to bacteria (F/B) increased along the mainstream. The total PLFA concentration, which represents the microbial biomass, decreased significantly toward the dam. Upstream and downstream sampling points were clearly distinguished by PLFA ordination in the redundancy analysis (RDA). That finding showed microbial PLFAs to have an obvious distribution pattern (increase or decrease) in the TGR. The PLFA distribution was markedly controlled by nutrients and heavy metals, but nutrients were more important. Moreover, among nutrients, Bio-P, NH4 + -N, NO3 - -N, and DOC were more important than TP, TN, TOC, and pH in controlling PLFA distribution. For heavy metals, Tl, V, Mo, and Ni were more important than Zn, Cu, Cd, and Pb. These findings suggested that Tl, V, Mo, and Ni should not be ignored to guard against their pollution in the TGR, and we should pay attention to them and make them our first priority. This study highlighted that the construction of the TGR changed riverine environments and altered microbial communities in sediments by affecting sedimentary properties. It is a reminder that the microbial ecology of sediment as an indicator should be considered in assessing the eco-risk of the TGR.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app