Add like
Add dislike
Add to saved papers

Peripheral nerve diffusion tensor imaging (DTI): normal values and demographic determinants in a cohort of 60 healthy individuals.

OBJECTIVE: To identify demographic determinants of peripheral nerve diffusion tensor imaging (DTI) and to establish normal values for fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD), and mean diffusivity (MD).

METHODS: Sixty subjects were examined at 3 Tesla by single-shot DTI. FA, AD, RD, and MD were collected for the sciatic, tibial, median, ulnar, and radial nerve and were correlated with demographic variables.

RESULTS: Mean FA of all nerves declined with increasing age (r = -0.77), which could be explained by RD increasing (r = 0.56) and AD declining (r = -0.40) with age. Moreover, FA was inversely associated with height (r = -0.28), weight (r = -0.38) and BMI (r = -0.35). Although FA tended to be lower in men than women (p = 0.052), this difference became completely negligible after adjustment to body weight. A multiple linear regression model for FA was calculated with age and weight as predictors (defined by backward variable selection), yielding an R 2 = 0.71 and providing a correction formula to adjust FA for age and weight.

CONCLUSION: Peripheral nerve DTI parameters depend on demographic variables. The most important determinants age and weight should be considered in all studies employing peripheral nerve DTI.

KEY POINTS: • Peripheral nerve diffusion tensor imaging (DTI) parameters depend on demographic variables. • Fractional anisotropy (FA) declines with increasing age and weight. • Gender does not systematically affect peripheral nerve DTI. • The formula presented here allows adjustment of FA for demographic variables.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app