Add like
Add dislike
Add to saved papers

Formation of new polymorphs and control of crystallization in molecular glass-formers by electric field.

Static electric fields were observed to modify the crystallization behavior in a simple supercooled liquid, leading to a new crystal polymorph that could not be obtained in the absence of a field, even under high-pressure conditions. Using different thermal protocols and field amplitudes in the range from 40 to 200 kV cm-1 , changes in both nucleation and crystal growth rates of 4-vinyl-propylene carbonate (vinyl-PC) are revealed. Remarkably, all field-induced changes in the crystallization behaviour were found to be fully reversible and do not affect dynamics of the tested liquid. Because vinyl-PC is a simple polar molecule, these field induced features are expected to occur in many other materials having permanent dipole moments. Our results highlight the important role of an external electric field as an additional control variable to influence the crystallization tendency of molecular glass-formers, and provide new opportunities in pharmaceutical science or organic electronics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app