Add like
Add dislike
Add to saved papers

Specific mutation of transglutaminase gene from Streptomyces hygroscopicus H197 and characterization of microbial transglutaminase.

Microbial transglutaminase (MTG) gene (mtg) from Streptomyces hygroscopicus H197 strain was cloned by PCR and mutated by deleting a specific 84 bp fragment using overlapping extension PCR. The mutant MTG and the wild MTG genes expressed by recombinant plasmid pET32a+- mutant mtg and pET32a+ -mtg, respectively, and were harvested by alternating freeze-thaw steps and purified by Ni column. The purified mutant MTG and the wild MTG exhibited 0.22 U/mg and 0.16 U/mg activity, respectively, and 0.69 U/mg and 0.54 U/mg activity, respectively, after activated by trypsin. The molecular weight of mutant MTG was estimated as 67 kDa by SDS-PAGE. Both MTGs showed optimum activity at pH 6-8 for hydroxamate formation from N-CBZ-Gln-Gly and hydroxylamine, and exhibited higher stability at 40°C and 1-3% salinity. The two types of MTG were not stable in the presence of Zn(II), Cu(II), Hg(II), Pb(II), Fe(III), and Ag(I), suggesting that they could possess a thiol group. In addition, the mutant MTG and the wild MTG were strongly affected by ethanol. Furthermore, the mutant MTG was obviously (P less than 0.05 or P less than 0.01) more stable than the wild MTG at 50°C and 60°C, at pH 4, 5, and 9, at 7 % and 9 % salinity, 30 % and 35 % ethanol concentration, and in the presence of Li(I) and Ag(I). The polyhydroxy compounds as protein stabilizers could elevate MTG stability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app