Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Designing flexible 2D transition metal carbides with strain-controllable lithium storage.

Efficient flexible energy storage systems have received tremendous attention due to their enormous potential applications in self-powering portable electronic devices, including roll-up displays, electronic paper, and "smart" garments outfitted with piezoelectric patches to harvest energy from body movement. Unfortunately, the further development of these technologies faces great challenges due to a lack of ideal electrode materials with the right electrochemical behavior and mechanical properties. MXenes, which exhibit outstanding mechanical properties, hydrophilic surfaces, and high conductivities, have been identified as promising electrode material candidates. In this work, taking 2D transition metal carbides (TMCs) as representatives, we systematically explored several influencing factors, including transition metal species, layer thickness, functional group, and strain on their mechanical properties (e.g., stiffness, flexibility, and strength) and their electrochemical properties (e.g., ionic mobility, equilibrium voltage, and theoretical capacity). Considering potential charge-transfer polarization, we employed a charged electrode model to simulate ionic mobility and found that ionic mobility has a unique dependence on the surface atomic configuration influenced by bond length, valence electron number, functional groups, and strain. Under multiaxial loadings, electrical conductivity, high ionic mobility, low equilibrium voltage with good stability, excellent flexibility, and high theoretical capacity indicate that the bare 2D TMCs have potential to be ideal flexible anode materials, whereas the surface functionalization degrades the transport mobility and increases the equilibrium voltage due to bonding between the nonmetals and Li. These results provide valuable insights for experimental explorations of flexible anode candidates based on 2D TMCs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app