JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Sclerostin influences body composition by regulating catabolic and anabolic metabolism in adipocytes.

Sclerostin has traditionally been thought of as a local inhibitor of bone acquisition that antagonizes the profound osteoanabolic capacity of activated Wnt/β-catenin signaling, but serum sclerostin levels in humans exhibit a correlation with impairments in several metabolic parameters. These data, together with the increased production of sclerostin in mouse models of type 2 diabetes, suggest an endocrine function. To determine whether sclerostin contributes to the coordination of whole-body metabolism, we examined body composition, glucose homeostasis, and fatty acid metabolism in Sost-/- mice as well as mice that overproduce sclerostin as a result of adeno-associated virus expression from the liver. Here, we show that in addition to dramatic increases in bone volume, Sost-/- mice exhibit a reduction in adipose tissue accumulation in association with increased insulin sensitivity. Sclerostin overproduction results in the opposite metabolic phenotype due to adipocyte hypertrophy. Additionally, Sost-/- mice and those administered a sclerostin-neutralizing antibody are resistant to obesogenic diet-induced disturbances in metabolism. This effect appears to be the result of sclerostin's effects on Wnt signaling and metabolism in white adipose tissue. Since adipocytes do not produce sclerostin, these findings suggest an unexplored endocrine function for sclerostin that facilitates communication between the skeleton and adipose tissue.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app