JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The Superantigen Toxic Shock Syndrome Toxin 1 Alters Human Aortic Endothelial Cell Function.

Staphylococcus aureus infective endocarditis (IE) is a fast-progressing and tissue-destructive infection of the cardiac endothelium. The superantigens (SAgs) toxic shock syndrome toxin 1 (TSST-1), staphylococcal enterotoxin C (SEC), and the toxins encoded by the enterotoxin gene cluster ( egc ) play a novel and essential role in the etiology of S. aureus IE. Recent studies indicate that SAgs act at the infection site to cause tissue pathology and promote vegetation growth. The underlying mechanism of SAg involvement has not been clearly defined. In SAg-mediated responses, immune cell priming is considered a primary triggering event leading to endothelial cell activation and altered function. Utilizing immortalized human aortic endothelial cells (iHAECs), we demonstrated that TSST-1 directly activates iHAECs, as documented by upregulation of vascular and intercellular adhesion molecules (VCAM-1 and ICAM-1). TSST-1-mediated activation results in increased monolayer permeability and defects in vascular reendothelialization. Yet stimulation of iHAECs with TSST-1 fails to induce interleukin-8 (IL-8) and IL-6 production. Furthermore, simultaneous stimulation of iHAECs with TSST-1 and lipopolysaccharide (LPS) inhibits LPS-mediated IL-8 and IL-6 secretion, even after pretreatment with either of the proinflammatory cytokines tumor necrosis factor alpha (TNF-α) and IL-1β. IL-8 suppression is not mediated by TSST-1 binding to its canonical receptor major histocompatibility complex class II (MHC-II), supporting current evidence for a nonhematopoietic interacting site on SAgs. Together, the data suggest that TSST-1 differentially regulates cell-bound and secreted markers of endothelial cell activation that may result in dysregulated innate immune responses during S. aureus IE. Endothelial changes resulting from the action of SAgs can therefore directly contribute to the aggressive nature of S. aureus IE and development of life-threatening complications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app