Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Surface proteins and the formation of biofilms by Staphylococcus aureus.

Staphylococcus aureus biofilms pose a serious clinical threat as reservoirs for persistent infections. Despite this clinical significance, the composition and mechanism of formation of S. aureus biofilms are unknown. To address these problems, we used solid-state NMR to examine S. aureus (SA113), a strong biofilm-forming strain. We labeled whole cells and cell walls of planktonic cells, young biofilms formed for 12-24h after stationary phase, and more mature biofilms formed for up to 60h after stationary phase. All samples were labeled either by (i) [15 N]glycine and l-[1-13 C]threonine, or in separate experiments, by (ii) l-[2-13 C,15 N]leucine. We then measured 13 C-15 N direct bonds by C{N} rotational-echo double resonance (REDOR). The increase in peptidoglycan stems that have bridges connected to a surface protein was determined directly by a cell-wall double difference (biofilm REDOR difference minus planktonic REDOR difference). This procedure eliminates errors arising from differences in 15 N isotopic enrichments and from the routing of 13 C label from threonine degradation to glycine. For both planktonic cells and the mature biofilm, 20% of pentaglycyl bridges are not cross-linked and are potential surface-protein attachment sites. None of these sites has a surface protein attached in the planktonic cells, but one-fourth have a surface protein attached in the mature biofilm. Moreover, the leucine-label shows that the concentration of β-strands in leucine-rich regions doubles in the mature biofilm. Thus, a primary event in establishing a S. aureus biofilm is extensive decoration of the cell surface with surface proteins that are linked covalently to the cell wall and promote cell-cell adhesion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app