Add like
Add dislike
Add to saved papers

Inducing targeted failure in cadaveric testing of 3-segment spinal units with and without simulated metastases.

We propose an experimental setup and protocol able to induce targeted failure of the middle vertebra in 3-segment spinal units and to capture the specimens' deformation in their post-failure state. Sixteen 3-segment spinal units with and without artificial metastases were destructively tested in axial compression using one of two failure criteria; either: (A) A clear drop in force (>10-15% of peak force) (n = 4); or (B) A minimum displacement of 5 mm (n = 12). Subsequently, the specimens were fully fixated in polymethylmethacrylate (PMMA), thereby preserving their post-failure state. Pre- and post-experiment computed tomography (CT) scans were acquired to determine the occurrence of failure in one of the vertebral bodies. All specimens were successfully fixated in their post-failure state. When applying failure criterion A, two specimens showed signs of failure. When applying failure criterion B, all specimens showed signs of failure; in 9 out of 12 specimens this occurred in the middle vertebrae only. In conclusion, this research provides an experimental setup and protocol able to induce targeted failure of 3-segment spinal units and to capture the specimens' deformation in their post-failure state. Furthermore, this study illustrates the importance of an adequate failure criterion for successful simulation of vertebral fractures in an experimental setup.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app