Add like
Add dislike
Add to saved papers

Copper slag as a catalyst for mercury oxidation in coal combustion flue gas.

Waste Management 2018 April
Copper slag is a byproduct of the pyrometallurgical smelting of copper concentrate. It was used in this study to catalyze elemental mercury (Hg0 ) oxidation in simulated coal combustion flue gas. The copper slag exhibited excellent catalytic performance in Hg0 oxidation at temperatures between 200 °C and 300 °C. At the most optimal temperature of 250 °C, a Hg0 oxidation efficiency of 93.8% was achieved under simulated coal combustion flue gas with both a high Hg0 concentration and a high gas hourly space velocity of 128,000 h-1 . Hydrogen chloride (HCl) was the flue gas component responsible for Hg0 oxidation over the copper slag. The transition metal oxides, including iron oxides and copper oxide in the copper slag, exhibited significant catalytic activities in the surface-mediated oxidation of Hg0 in the presence of HCl. It is proposed that the Hg0 oxidation over the copper slag followed the Langmuir-Hinshelwood mechanism whereby reactive chlorine species that originated from HCl reacted with the physically adsorbed Hg0 to form oxidized mercury. This study demonstrated the possibility of reusing copper slag as a catalyst for Hg0 oxidation and revealed the mechanisms involved in the process and the key factors in the performance. This knowledge has fundamental importance in simultaneously reducing industrial waste and controlling mercury emissions from coal-fired power plants.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app