Add like
Add dislike
Add to saved papers

Structural Stability and Evolution of Medium-Sized Tantalum-Doped Boron Clusters: A Half-Sandwich-Structured TaB 12 - Cluster.

Inorganic Chemistry 2018 January 3
Transition-metal (TM)-doped boron clusters have received considerable attention in recent years, in part, because of their remarkable size-dependent structural and electronic properties. However, the structures of medium-sized boron clusters doped with TM atoms are still not well-known because of the much increased complexity of the potential surface as well as the rapid increase in the number of low-energy isomers, which are the challenges in cluster structural searches. Here, by means of an unbiased structure search, we systematically investigated the structural evolution of medium-sized tantalum-doped boron clusters, TaBn 0/- (n = 10-20). The results revealed that TaBn 0/- (n = 10-15) clusters adopt half-sandwich molecular geometries, with the notable exception of TaB10 - , while for n = 16-18 and 19-20, the lowest-energy clusters are characterized by drum-type geometries and tubular molecules with two B atoms on the top, respectively. Good agreement between the calculated and experimental photoelectron spectra strongly support the validity of our global minimum structures. Molecular orbital and adaptive natural density partitioning analyses indicate that the enhanced stability of half-sandwich TaB12 - is due to the strong interaction of the Ta atom (5d orbitals) with surrounding B atoms (2p orbitals) and σ B-B bonds in the B12 moiety.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app