Add like
Add dislike
Add to saved papers

An ex-vivo model of shear-rate-based activation of blood coagulation.

: The study presents a model of shear-stress-based platelet activation. Twenty-eight patients (22 free from anticoagulants and major antiplatelet agents, and six under the effects of P2Y12 platelet inhibitors) participated. The main purpose was to verify the hypothesis that a model of shear-dependent blood activation does not require artificial activators to trigger clot formation. Whole blood collected from the patients received platelet function tests [ADPtest and thrombin receptor-activating peptide (TRAP)test] and was tested with a cone-on-plate viscosimeter at a shear rate of 100 s. Changes in blood viscosity were characterized by a time-to-gel point (TGP), a maximum clot viscosity and a steady clot viscosity (SCV). In patients free from major antiplatelet effects, the TGP was 180 s (interquartile range 148-290 s), while in patients under double antiplatelet therapy the TGP was significantly (P = 0.039) longer (345 s, interquartile range 250-452 s). The SCV was 16 centipoise (cP) (interquartile range 11-47 cP) in the patients free from major antiplatelet agents, significantly (P = 0.012) higher than in patients under double antiplatelet therapy (10 cP, interquartile range 6-11 cP). There was a significant (P = 0.011) association between platelet function at the TRAPtest and the maximum clot viscosity, and between TRAPtest and the SCV (P = 0.021). A shear rate of 100 s triggers clot formation through a primary role of platelet activation in this model of blood activation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app