Add like
Add dislike
Add to saved papers

Separate roles for chromatin and lamins in nuclear mechanics.

Nucleus 2018 January 2
The cell nucleus houses, protects, and arranges the genome within the cell. Therefore, nuclear mechanics and morphology are important for dictating gene regulation, and these properties are perturbed in many human diseases, such as cancers and progerias. The field of nuclear mechanics has long been dominated by studies of the nuclear lamina, the intermediate filament shell residing just beneath the nuclear membrane. However, a growing body of work shows that chromatin and chromatin-related factors within the nucleus are an essential part of the mechanical response of the cell nucleus to forces. Recently, our group demonstrated that chromatin and the lamina provide distinct mechanical contributions to nuclear mechanical response. The lamina is indeed important for robust response to large, whole-nucleus stresses, but chromatin dominates the short-extension response. These findings offer a clarifying perspective on varied nuclear mechanics measurements and observations, and they suggest several new exciting possibilities for understanding nuclear morphology, organization, and mechanics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app