Add like
Add dislike
Add to saved papers

Bottom-up Nanoencapsulation from Single Cells to Tunable and Scalable Cellular Spheroids for Hair Follicle Regeneration.

Cell surface engineering technology advances cell therapeutics and tissue engineering by accurate micro/nanoscale control in cell-biomaterial ensembles and cell spheroids formation. By tailoring cell surface, microgels can encapsulate cells for versatile uses. However, microgels are coated in a thick layer to house multiple cells together but not a single cell based. Besides, excessive deposition on cell surface is detrimental to cellular functions. Herein, layer-by-layer (LbL) self-assembly to encapsulate single cell using nanogel is reported, owing to its security and tunable thickness at nanoscale, and further forms cell spheroids by physical cross-linking on nanogel-coated cells for delivery. A hair follicle (HF) regeneration model where the dermal papilla cells (DPCs) are given a 3D installation to maintain its ability of HF induction during in vitro culture is studied. Dermal papilla (DP) spheroids are optimized and that LbL-DPCs aggregation is akin to primary DP is demonstrated. The markers ALP, Versican, and NCAM are examined to investigate that high-passaged (P8) DP spheroids can restore the hair induction potential, which are lost in 2D culture. New HFs are regenerated successfully by implantation of DP spheroids in vivo.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app