JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Antisense suppression of glial fibrillary acidic protein as a treatment for Alexander disease.

Annals of Neurology 2018 January
OBJECTIVE: Alexander disease is a fatal leukodystrophy caused by autosomal dominant gain-of-function mutations in the gene for glial fibrillary acidic protein (GFAP), an intermediate filament protein primarily expressed in astrocytes of the central nervous system. A key feature of pathogenesis is overexpression and accumulation of GFAP, with formation of characteristic cytoplasmic aggregates known as Rosenthal fibers. Here we investigate whether suppressing GFAP with antisense oligonucleotides could provide a therapeutic strategy for treating Alexander disease.

METHODS: In this study, we use GFAP mutant mouse models of Alexander disease to test the efficacy of antisense suppression and evaluate the effects on molecular and cellular phenotypes and non-cell-autonomous toxicity. Antisense oligonucleotides were designed to target the murine Gfap transcript, and screened using primary mouse cortical cultures. Lead oligonucleotides were then tested for their ability to reduce GFAP transcripts and protein, first in wild-type mice with normal levels of GFAP, and then in adult mutant mice with established pathology and elevated levels of GFAP.

RESULTS: Nearly complete and long-lasting elimination of GFAP occurred in brain and spinal cord following single bolus intracerebroventricular injections, with a striking reversal of Rosenthal fibers and downstream markers of microglial and other stress-related responses. GFAP protein was also cleared from cerebrospinal fluid, demonstrating its potential utility as a biomarker in future clinical applications. Finally, treatment led to improved body condition and rescue of hippocampal neurogenesis.

INTERPRETATION: These results demonstrate the efficacy of antisense suppression for an astrocyte target, and provide a compelling therapeutic approach for Alexander disease. Ann Neurol 2018;83:27-39.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app