Add like
Add dislike
Add to saved papers

Validation of a New Scoring Scale for Behavioral Assessment of L-Dopa-Induced Dyskinesia in the Rat: A New Tool for Early Decision-Making in Drug Development.

The 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated nonhuman primate (NHP) has been described as the most translatable model for experimental reproduction of L-dopa-induced dyskinesia (LID). However, from a drug discovery perspective, the risk associated with investment in this type of model is high due to the time and cost. The 6-hydroxydopamine (6-OHDA) rat dyskinesia model is recommended for testing compounds but relies on onerous, and nonstandard behavioral rating scales. We sought to develop a simplified and sensitive method aiming at assessing LID in the rat. The purpose was to validate a reliable tool providing earlier insight into the antidyskinetic potential of compounds in a time/cost-effective manner before further investigation in NHP models. Unilaterally 6-OHDA-lesioned rats were administered L-dopa (20 mg/kg) and benserazide (5 mg/kg) daily for 3 weeks starting 4 weeks postlesion, then coadministered with amantadine (20-30-40 mg/kg). An adapted rating scale was used to score LID frequency and a severity coefficient was applied depending on the features of the observed behavior. A gradual increase (about 3-fold) in LID score was observed over the 3 weeks of L-dopa treatment. The rating scale was sensitive enough to highlight a dose-dependent amantadine-mediated decrease (about 2.2-fold) in LID score. We validated a simplified method, able to reflect different levels of severity in the assessment of LID and, thus, provide a reliable tool for drug discovery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app