Add like
Add dislike
Add to saved papers

Specific Dopamine Sensing Based on Short-Term Plasticity Behavior of a Whole Organic Artificial Synapse.

ACS Sensors 2017 December 23
In this work, we demonstrate the ultrasensitive and selective detection of dopamine by means of a neuro-inspired device platform without the need of a specific recognition moiety. The sensor is a whole organic device featuring two electrodes made of poly(3,4-ethylenedioxythiophene):polystyrenesulfonate-PEDOT:PSS-patterned on a polydymethylsiloxane-PDMS-flexible substrate. One electrode is pulsed with a train of voltage square waves, to mimic the presynaptic neuron behavior, while the other is used to record the displacement current, mimicking the postsynaptic neuron. The current response exhibits the features of synaptic Short-Term Plasticity (STP) with facilitating or depressing response according to the stimulus frequency. We found that the response characteristic time υSTP depends on dopamine (DA) concentration in solution. The dose curve exhibits superexponential sensitivity at the lowest concentrations below 1 nM. The sensor detects [DA] down to 1 pM range. We assess the sensor also in the presence of ascorbic acid (AA) and uric acid (UA). Our sensor does not respond to UA, but responds to AA only at concentration above 100 μM. However, it is still able to detect DA down to 1 pM range in the presence of [AA] = 100 μM and 100 pM in the presence of [UA] = 3 μM, these values for AA and UA being the physiological levels in the cerebrospinal fluid and the striatum, respectively.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app