Add like
Add dislike
Add to saved papers

Permeable Protein-Loaded Polymersome Cascade Nanoreactors by Polymerization-Induced Self-Assembly.

ACS Macro Letters 2017 October 32
Enzyme loading of polymersomes requires permeability to enable them to interact with the external environment, typically requiring addition of complex functionality to enable porosity. Herein, we describe a synthetic route towards intrinsically permeable polymersomes loaded with functional proteins using initiator-free visible light-mediated polymerization-induced self-assembly (photo-PISA) under mild, aqueous conditions using a commercial monomer. Compartmentalization and retention of protein functionality was demonstrated using green fluorescent protein as a macro-molecular chromophore. Catalytic enzyme-loaded vesicles using horseradish peroxidase and glucose oxidase were also prepared and the permeability of the membrane towards their small molecule substrates was revealed for the first time. Finally, the interaction of the compartmentalized enzymes between separate vesicles was validated by means of an enzymatic cascade reaction. These findings have a broad scope as the methodology could be applied for the encapsulation of a large range of macromolecules for advancements in the fields of nanotechnology, biomimicry and nanomedicine.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app