Add like
Add dislike
Add to saved papers

Swelling-induced wrinkling in layered gel beams.

Gels are widely employed in smart mechanical devices and biomedical applications. Swelling-induced bending actuation can be obtained by means of a simple bilayer gel beam. We show that this system can also exhibit wrinkling patterns of potential interest for structural morphing and sensing. We study swelling-induced wrinkling at the extrados of a bilayer gel beam with the softer layer on top. The bent configuration at finite strain is recovered first and, starting from it, a linear perturbation analysis is performed. We delimit the zone corresponding to wrinkling modes in a parameter plane encompassing a mechanical stiffness ratio and a geometric top layer to total height ratio. Interestingly, we observe that surface instability precedes and envelopes wrinkling modes of finite wavelength. Finally, we discuss the effect of changes in stiffness and of the Flory-Huggins parameters χ on the size of the wrinkling domain.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app