Add like
Add dislike
Add to saved papers

Copper Nanoparticles for Ascorbic Acid Sensing in Water on Carbon Screen-printed Electrodes.

A carbon screen-printed electrode was modified with copper nanoparticles from their dispersion obtained via pulsed laser ablation of a copper target in ethanol. The modified electrode exhibited activity in ascorbic acid electrochemical oxidation, giving an anodic current peak on voltammograms. Linear sweep and cyclic voltammetry have shown a linear dependence of the signal (both peak height and peak area) on the ascorbic acid concentration. The linear range from 1 to 250 μM of ascorbic acid was studied, and the detection limit was experimentally found to be 0.5 μM. The amperometric response to the addition of ascorbic acid portions into the solution was recorded. For the case of the simultaneous presence of ascorbic acid and glucose, two separate signal were obtained. Thus, the modified electrodes are characterized by the following advantages: disposable use; small amount of the samples required for the analysis; lower price (cheap copper is used); simple and easy modification procedure; good metrological characteristics; selectivity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app