Add like
Add dislike
Add to saved papers

Ca 2+ mediates axotomy-induced necrosis and apoptosis of satellite glial cells remote from the transection site in the isolated crayfish mechanoreceptor.

Severe nerve injury such as axotomy induces neuron degeneration and death of surrounding glial cells. Using a crayfish stretch receptor that consists of a single mechanoreceptor neuron enveloped by satellite glia, we showed that axotomy not only mechanically injures glial cells at the transection location, but also induces necrosis or apoptosis of satellite glial cells remote from the transection site. We studied Ca2+ role in spontaneous or axotomy-induced death of remote glial cells. Stretch receptors were isolated using the original technique that kept the neuron connected to the ventral cord ganglion (control preparations). Using Ca2+ -sensitive fluorescence probe fluo-4, we showed Ca2+ accumulation in neuronal perikarion and glial envelope. Ca2+ gradually accumulated in glial cells after axotomy. In saline with triple Ca2+ concentration the axotomy-induced apoptosis of glial cells increased, but spontaneous or axotomy-induced necrosis was unexpectedly reduced. Saline with 1/3[Ca2+ ], oppositely, enhanced glial necrosis. Application of ionomycin, CdCl2 , thapsigargin, and ryanodine showed the involvement of Ca2+ influx through ionic channels in the plasma membrane, inhibition of endoplasmic reticulum Ca2+ -ATPase, and Ca2+ release from endoplasmic reticulum through ryanodine receptors in axotomy-induced glial necrosis. Apoptosis of glial cells surrounding axotomized neurons was promoted by ionomycin and thapsigargin. Possibly, other Ca2+ sources such as penetration through the plasma membrane contributed to axotomy-induced apoptosis and necrosis of remote glial cells. Thus, modulating different pathways that maintain calcium homeostasis, one can modulate axotomy-induced death of glial cells remote from the transection site.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app