Add like
Add dislike
Add to saved papers

Tannic acid (TA): A molecular tool for chelating and imaging labile iron.

This report presents the potential utilization of tannic acid (TA) as a natural iron chelator. TA is capable of binding with small ferric complexes without competitive binding with endogenous iron-containing molecules such as ferritin and transferrin. It was observed that the extracellular iron binding of TA resulted in the formation of self-assembled Fe3+ -TA complexes, which were then taken up by HepG2 cells via phagocytosis pathway with autophagy-inducing properties. Obviously, TA was found to inhibit iron-induced HepG2 cell growth. However, cellular interactions and biological responses to the treatment were found to depend on availability of iron. Based on the results of the iron efflux experiment, it can be stated that TA has the capability to mobilize iron from cells in the form of assembled Fe3+ -TA complexes. Interestingly, TA-mediated cellular iron influx and efflux were successfully monitored via MRI. The results of this study suggest that TA can be used as a molecular tool for chelating and imaging labile iron. This might be a promising approach for prevention and treatment of iron-associated cancer or other iron overload disorders.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app