Add like
Add dislike
Add to saved papers

Global occurrence of polybrominated diphenyl ethers and their hydroxylated and methoxylated structural analogues in an important animal feed (fishmeal).

Polybrominated diphenyl ethers (PBDEs) and their hydroxylated (OH) and methoxylated (MeO) structural analogues have been found widely distributed in aquatic ecosystems, and may exhibit potential adverse effects to humans due to their bioaccumulative behavior through food chain. Fishmeal is an important animal feed applied around the world and is generally of marine origin. However, the levels and sources of PBDEs in fishmeal have not been thoroughly evaluated and their structural analogues have not been reported to date. The present study collected ninety-two fishmeal samples from world main fishmeal producing area to determine 27 PBDEs, 10 MeO-PBDEs and 11 OH-PBDEs. The concentrations of Σ27 PBDEs, Σ10 MeO-PBDEs and Σ11 OH-PBDEs were in the ranges of 0.1-1498 (mean: 75.8), 1.14-881 (37.4) and 1.00-47.5 (8.17) ng/g lipid, respectively. PBDEs were found primarily correlated with the historically commercial production, meaning higher production of certain commercial product in a country, higher corresponding PBDE congeners in local fishmeal. A market shift from penta- and octa-formulations toward deca-formulation was observed. BDE209 was identified as a major congener in fishmeal. Both the MeO-PBDEs and the OH-PBDEs were influenced by fishmeal producing areas (p < 0.001). High MeO-PBDEs were identified in the Southeast Asian fishmeal, which might be due to the suitable environmental conditions for the generation of bromoperoxidase-contained algae in local area. The ratio of two major MeO-PBDE congeners, 6-MeO-BDE47/2'-MeO-BDE68, were generally >1 in the northern hemisphere and <1 in the southern hemisphere in the present study, which was consistent with the results obtained from previous published papers. Both MeO-PBDEs and OH-PBDEs were in accordance with the specialties of naturally produced halogenated compounds.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app