JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Mild hypothermia protects hippocampal neurons from oxygen-glucose deprivation injury through inhibiting caspase-3 activation.

Cryobiology 2018 Februrary
Mild hypothermia (MH) is thought to be one of the most effective therapeutic methods to treat hypoxic-ischemic encephalopathy (HIE) after cardiac arrest (CA). However, its precise mechanisms remain unclear. In this research, hippocampal neurons were cultured and treated with mild hypothermia and Ac-DEVD-CHO after oxygen-glucose deprivation (OGD). The activity of caspase-3 was detected, in order to find the precise concentration of Ac-DEVD-CHO with the same protective role in OGD injury as MH treatment. Western blot and immunofluorescence staining were conducted to analyze the effects of MH and Ac-DEVD-CHO on the expressions of caspase-3, caspase-8, and PARP. The neuronal morphology was observed with an optical microscope. The lactic acid dehydrogenase (LDH) release rate, neuronal viability, and apoptotic rate were also detected. We found that MH (32 °C) and Ac-DEVD-CHO (5.96 μMol/L) had equal effects on blocking the activation of caspase-3 and the OGD-induced cleavage of PARP, but neither had any effect on the activation of caspase-8, which goes on to activate caspase-3 in the apoptotic pathway. Meanwhile, both MH and Ac-DEVD-CHO had similar effects in protecting cell morphology, reducing LDH release, and inhibiting OGD-induced apoptosis in neurons. They also similarly improved neuronal viability after OGD. In conclusion, caspase-3 serves as a key intervention point of the key modulation site or regulatory region in MH treatment that protects neuronal apoptosis against OGD injury. Inhibiting the expression of caspase-3 had a protective effect against OGD injury in MH treatment, and caspase-3 activation could be applied to evaluate the neuroprotective effectiveness of MH on HIE.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app