Add like
Add dislike
Add to saved papers

Micropatterned Geometry Shape Oligodendrocyte and Microglia Plasticity.

Cellular adhesion is essential in maintaining multicellular structure by connecting cells to each other in vivo and to a biomimetic substrate in vitro. In this context, one of the first steps toward the comprehension, for instance, of oligodendrocyte and microglia adhesion and migrating behavior consists in discriminating the different morphological features that can be acquired when cells are cultured on diverse surface topographies that mimic an in vivo three-dimensional environment. With this in mind, in this chapter, we describe how to exploit the silicon isotropic topography consisting of line-grating geometries and micropillar structures fabricated on polydimethylsiloxane by soft lithography. By reproducing a specialized niche for the cells, micropatterned biomimetic substrates can help to understand the role of structural determinants in priming morphogenesis of oligodendrocytes and microglia and can be exploited for translational research on functional tissue engineering and implantable device design.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app