Add like
Add dislike
Add to saved papers

Integration of Comparative Genomics with Genome-Scale Metabolic Modeling to Investigate Strain-Specific Phenotypical Differences.

Genome-scale metabolic reconstructions are powerful resources that allow translation biological knowledge and genomic information to phenotypical predictions using a number of constraint-based methods. This approach has been applied in recent years to gain deep insights into the cellular phenotype role of the genes at a systems-level, driving the design of targeted experiments and paving the way for knowledge-based synthetic biology.The identification of genetic determinants underlying the variability at the phenotypical level is crucial to understand the evolutionary trajectories of a bacterial species. Recently, genome-scale metabolic models of different strains have been assembled to highlight the intra-species diversity at the metabolic level. The strain-specific metabolic capabilities and auxotrophies can be used to identify factors related to the lifestyle diversity of a bacterial species.In this chapter, we present the computational steps to perform genome-scale metabolic modeling in the context of comparative genomics, and the different challenges related to this task.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app