Add like
Add dislike
Add to saved papers

Molecular insights into the non-recombining nature of the spinach male-determining region.

Spinach (Spinacia oleracea L.) is a dioecious plant with male heterogametic sex determination and homomorphic sex chromosomes (XY). The dioecism is utilized for producing commercial hybrid seeds, and hence understanding the molecular-genetic basis of the species' sex determining locus is an important issue for spinach breeding. In this study, seven dominant DNA markers were shown to completely co-segregate with the male-determining gene in segregating spinach populations comprising > 1500 plants. In addition, these seven dominant DNA markers were completely associated with the male-determining gene in over 100 spinach germplasm accessions and cultivars. These observations suggest that, in spinach, a Y-chromosomal region around the male-determining locus does not (or almost not) recombine with a counterpart region on the X chromosome. Using five of the seven DNA markers, five bacterial artificial chromosome (BAC) clone contigs with a total length of approximately 690 kbp were constructed. Full sequencing of six representative BAC clones (total insert length 504 kbp) from the five contigs and a transcriptome analysis by RNA-seq revealed that the Y-chromosomal region around the male-determining locus contains large amounts of repetitive elements, suggesting that the region might be poor in gene content. Most of the repeats found in this region are novel Ty1-copia-like and its derivative elements that accumulate predominantly in heterochromatic regions. Our findings may provide valuable insight into spinach genome structure and clues for future research into the evolution of the sex determining locus.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app