Add like
Add dislike
Add to saved papers

Prediction of genomic breeding values using new computing strategies for the implementation of MixP.

Scientific Reports 2017 December 9
MixP is an implementation that uses the Pareto principle to perform genomic prediction. This study was designed to develop two new computing strategies: one strategy for nonMCMC-based MixP (FMixP), and the other one for MCMC-based MixP (MMixP). The difference is that MMixP can estimate variances of SNP effects and the probability that a SNP has a large variance, but FMixP cannot. Simulated data from an international workshop and real data on large yellow croaker were used as the materials for the study. Four Bayesian methods, BayesA, BayesCπ, MMixP and FMixP, were used to compare the predictive results. The results show that BayesCπ, MMixP and FMixP perform better than BayesA for the simulated data, but all methods have very similar predictive abilities for the large yellow croaker. However, FMixP is computationally significantly faster than the MCMC-based methods. Our research may have a potential for the future applications in genomic prediction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app