JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

On the Production of Chitosan-Coated Polycaprolactone Nanoparticles in a Confined Impinging Jet Reactor.

This work is focused on the synthesis of polycaprolactone nanoparticles, coated with chitosan, in a confined impinging jet reactor using the solvent displacement method. The role of the various reacting species was investigated, evidencing that a biocompatible polymer, for example, polycaprolactone, is required to support chitosan to obtain a monomodal particle size distribution, with low particle diameters. A surfactant is required to reduce the nanoparticle size (down to a mean diameter of about 260 nm) and obtain a positive zeta potential (about +31 mV), perfectly suitable for pharmaceutical applications. Different surfactants were tested, and Poloxamer 388 appeared to be preferable to polyvinyl alcohol. The effect of the concentration of Poloxamer 388 (in the range 0.5-5 mg mL-1 ) and of chitosan (in the range 1.5-5 mg mL-1 ) on both the mean particle size and zeta potential was also investigated, evidencing that chitosan concentration has the strongest effect on both parameters. Finally, the effect of solvent evaporation, quenching and feed flow rate was investigated, showing that the evaporation stage does not affect particle characteristics, quenching is required to avoid particle aggregation, and a minimum liquid flow rate of 80 mL min-1 is required in the considered reactor to minimize the particle size.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app