Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Microbial electricity driven anoxic ammonium removal.

Water Research 2018 March 2
Removal of nitrogen, mainly in form of ammonium (NH4 + ), in wastewater treatment plants (WWTPs) is a highly energy demanding process, mainly due to aeration. It causes costs of about half a million Euros per year in an average European WWTP. Alternative, more economical technologies for the removal of nitrogen compounds from wastewater are required. This study proves the complete anoxic conversion of ammonium (NH4 + ) to dinitrogen gas (N2 ) in continuously operated bioelectrochemical systems at the litre-scale. The removal rate is comparable to conventional WWTPs with 35 ± 10 g N m-3 d-1 with low accumulation of NO2 - , NO3 - , N2 O. In contrast to classical aerobic nitrification, the energy consumption is considerable lower (1.16 ± 0.21 kWh kg-1 N, being more than 35 times less than for the conventional wastewater treatment). Biotic and abiotic control experiments confirmed that the anoxic nitrification was an electrochemical biological process mainly performed by Nitrosomonas with hydroxylamine as the main substrate (mid-point potential, Eox  = +0.67 ± 0.08 V vs. SHE). This article proves the technical feasibility and reduction of costs for ammonium removal from wastewater, investigates the underlying mechanisms and discusses future engineering needs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app