Add like
Add dislike
Add to saved papers

$L_{0}$ -Regularized Image Downscaling.

In this paper, we propose a novel -regularized optimization framework for image downscaling. The optimization is driven by two -regularized priors. The first prior, gradient-ratio prior, is based on the observation that the number of edges in the downscaled image is approximately inverse square proportional to the downscaling factor. By introducing norm sparsity to the gradient ratio, the downscaled image is able to preserve the most salient edges as well as the visual perception of the original image. The second prior, downsampling prior, is to constrain the downsampling matrix so that pixels of the downscaled image are estimated according to those optimal neighboring pixels. Extensive experiments on the Urban100 and BSDS500 data sets show that the proposed algorithm achieves superior performance over the state-of-the-arts, in terms of both quality and robustness.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app