Add like
Add dislike
Add to saved papers

Plasmon-Induced Ultrafast Hydrogen Production in Liquid Water.

Hydrogen gas production from solar water splitting provides a renewable energy cycle to address the grand global energy challenge; however, its dynamics and fundamental mechanism remain elusive. We directly explore by first-principles the ultrafast electron-nuclear quantum dynamics on the time scale of ∼100 fs during water photosplitting on a plasmonic cluster embedded in liquid water. Water molecule splitting is assisted by rapid proton transport in liquid water in a Grotthuss-like mechanism. We identify that a plasmon-induced field enhancement effect dominates water splitting, while charge transfer from gold to the antibonding orbital of a water molecule also plays an important role. "Chain-reaction" like rapid H2 production is observed via the combination of two hydrogen atoms from different water molecules. These results provide a route toward a complete understanding of water photosplitting in the ultimate time and spatial limit.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app