Add like
Add dislike
Add to saved papers

Experimental and theoretical studies on the NLO properties of two quaternary non-centrosymmetric chalcogenides: BaAg 2 GeS 4 and BaAg 2 SnS 4 .

New middle and far-infrared (MFIR) nonlinear optical (NLO) chalcogenides have been receiving increasing attention for their great importance in military and civil fields. In addition, the current challenge in the efforts for identifying a promising MFIR NLO material lies in achieving simultaneously large second-harmonic generation (SHG) intensity and high laser-induced damage threshold (LIDT) in the same material. In this study, two quaternary non-centrosymmetric (NCS) sulfides, BaAg2 GeS4 (1) and BaAg2 SnS4 (2), were synthesized from a high-temperature solid-state reaction using BaCl2 flux in evacuated closed silica tubes. Although 1 and 2 show identical stoichiometry, they crystallize in different NCS space groups, tetragonal I4[combining macron]2m (no. 121) and orthorhombic I222 (no. 23), respectively, based on the results of crystal structure solution. In their structures, highly distorted AgS4 tetrahedra interconnect together via corner-sharing to form two-dimensional (2D) layers, which are further bridged with isolated GeS4 or SnS4 units to produce a three-dimensional (3D) framework structure with Ba cations lying in the tunnels. Remarkably, they not only possess phase-matchable (PM) abilities but also exhibit a good balance between strong SHG responses (1.7× and 0.4× AgGaS2 ) and high LIDTs (3.2× and 1.5× AgGaS2 ). Moreover, theoretical calculations based on density functional theory (DFT) methods have aided the understanding of energy bands, electronic structures, and linear and NLO properties.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app