Add like
Add dislike
Add to saved papers

Mitochondrial abnormalities related to the dysfunction of circulating endothelial colony-forming cells in moyamoya disease.

Journal of Neurosurgery 2017 December 9
OBJECTIVE Moyamoya disease (MMD) is a unique cerebrovascular disorder characterized by the progressive occlusion of the bilateral internal carotid arteries. Endothelial colony-forming cells (ECFCs), previously termed "endothelial progenitor cells," play an important role in the pathogenesis of MMD. In this study, the authors performed morphological and functional studies of the mitochondria of ECFCs from patients with MMD to present new insights into the pathogenesis of the disease. METHODS The morphology of ECFCs from 5 MMD patients and 5 healthy controls was examined under both a transmission electron microscope and a confocal laser scanning microscope. The oxygen consumption rates (OCRs), mitochondrial membrane potentials (MMPs), intracellular Ca2+ concentrations, mitochondrial enzyme activities, and reactive oxygen species (ROS) levels were measured. Functional activity of the ECFCs was evaluated using a capillary tube formation assay. RESULTS The ECFCs from the MMD patients displayed a disrupted mitochondrial morphology, including a shorter and more circular shape. The ECFC mitochondria from the MMD patients exhibited functional abnormalities, which were assessed as a decreased OCR and an increased intracellular Ca2+ concentration. Moreover, the ECFCs from MMD patients showed increased ROS levels. Interestingly, treatment with an ROS scavenger not only reversed the mitochondrial abnormalities but also restored the angiogenic activity of the ECFCs from the MMD patients. CONCLUSIONS The mitochondria of ECFCs from MMD patients, as compared with those from healthy patients, exhibited morphological and functional abnormalities. This finding suggests that the mitochondrial abnormalities may have a role in the pathogenesis of MMD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app