Add like
Add dislike
Add to saved papers

Intersubband Landau Level Couplings Induced by In-Plane Magnetic Fields in Trilayer Graphene.

Physical Review Letters 2017 November 4
We observed broken-symmetry quantum Hall effects and level crossings between spin- and valley- resolved Landau levels (LLs) in Bernal stacked trilayer graphene. When the magnetic field was tilted with respect to the sample normal from 0° to 66°, the LL crossings formed at intersections of zeroth and second LLs from monolayer-graphene-like and bilayer-graphene-like subbands, respectively, exhibited a sequence of transitions. The results indicate the LLs from different subbands are coupled by in-plane magnetic fields (B_{∥}), which was explained by developing the tight-binding model Hamiltonian of trilayer graphene under B_{∥}.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app