Add like
Add dislike
Add to saved papers

Nuclear Matrix Elements for Tests of Local Lorentz Invariance Violation.

Physical Review Letters 2017 November 11
The nuclear matrix elements for the spin operator and the momentum quadrupole operator are important for the interpretation of precision atomic physics experiments that search for violations of local Lorentz and CPT symmetry and for new spin-dependent forces. We use the configuration-interaction nuclear shell model and self-consistent mean-field theory to calculate the momentum matrix elements for ^{21}Ne, ^{23}Na, ^{133}Cs, ^{173}Yb, and ^{201}Hg. We show that these momentum matrix are strongly suppressed by the many-body correlations, in contrast to the well-known enhancement of the spatial quadrupole nuclear matrix elements.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app