Add like
Add dislike
Add to saved papers

Suppression of Ion-Scale Microtearing Modes by Electron-Scale Turbulence via Cross-Scale Nonlinear Interactions in Tokamak Plasmas.

Physical Review Letters 2017 November 11
Gyrokinetic turbulence simulations are applied for the first time to the cross-scale interactions of microtearing modes (MTMs) and electron-temperature-gradient (ETG) modes. The investigation of the fluctuation response in a multiscale simulation including both types of instabilities indicates that MTMs are suppressed by ETG turbulence. A detailed analysis of nonlinear mode coupling reveals that radially localized current-sheet structures of MTMs are strongly distorted by fine-scale E×B flows of ETG turbulence. Consequently, electron heat transport caused by the magnetic flutter of MTMs is significantly reduced and ETG turbulence dominates electron heat transport.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app