Add like
Add dislike
Add to saved papers

Nonadiabatic Vibrational Damping of Molecular Adsorbates: Insights into Electronic Friction and the Role of Electronic Coherence.

Physical Review Letters 2017 October 28
We present a perturbation approach rooted in time-dependent density-functional theory to calculate electron-hole (e-h) pair excitation spectra during the nonadiabatic vibrational damping of adsorbates on metal surfaces. Our analysis for the benchmark systems CO on Cu(100) and Pt(111) elucidates the surprisingly strong influence of rather short electronic coherence times. We demonstrate how in the limit of short electronic coherence times, as implicitly assumed in prevalent quantum nuclear theories for the vibrational lifetimes as well as electronic friction, band structure effects are washed out. Our results suggest that more accurate lifetime or chemicurrentlike experimental measurements could characterize the electronic coherence.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app