Add like
Add dislike
Add to saved papers

Interatomic Spin Coupling in Manganese Clusters Registered on Graphene.

Physical Review Letters 2017 October 28
Different interatomic spin interactions in graphene-regulated Mn atomic clusters are investigated by low-temperature scanning tunneling microscopy and magnetic-field-dependent inelastic spin excitation spectroscopy. All dimers observed exhibit an antiferromagnetic (AFM) singlet ground state and spin transition from the singlet to triplet states, but their AFM coupling strength shows a unique dependence on their site registration on the graphene. Intriguing spin coupling can be found in the graphene-mediated Mn trimers, which manifest multilevel spin excitations. In combination with Heisenberg spin modeling and first-principles numerical simulation, an exclusive noncollinear spin configuration of the Mn trimer regulated by the graphene template can be determined, and our observed experimental exchange energies cannot be understood by a direct spin exchange mechanism, but suggest a nonlocal Ruderman-Kittel-Kasuya-Yosida indirect spin exchange mechanism through substrate modulation, which has not yet been achieved in graphene so far.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app