JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Multicomponent, Enantioselective Michael-Michael-Aldol-β-Lactonizations Delivering Complex β-Lactones.

Optically active, tertiary amine Lewis bases react with unsaturated acid chlorides to deliver chiral, α,β-unsaturated acylammonium salts. These intermediates participate in a catalytic, enantioselective, three-component process delivering bi- and tricyclic β-lactones through a Michael-Michael-aldol-β-lactonization. In a single operation, the described multicomponent, organocascade process forms complex bi- and tricyclic β-lactones by generating four new bonds, two rings, and up to four contiguous stereocenters. In the racemic series, yields of 22-75% were achieved using 4-pyrrolidinopyridine as Lewis base. In the enantioselective series employing isothiourea catalysts, a kinetic resolution of the initially formed racemic Michael adduct appears operative, providing yields of 46% to quantitative (based on 50% max) with up to 94:6 er. Some evidence for a dynamic kinetic asymmetric transformation for tricyclic-β-lactone 1d was obtained following optimization (yields up to 61%, 94:6 er) through a presumed reversible Michael.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app