ENGLISH ABSTRACT
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

[Study on mechanism of hepatotoxicity of Ploygoni Multiflori Caulis based on function inhibition of bilirubin-associated transporters in idiosyncratic rat].

To explore the possible mechanism of liver injury, the effects of Ploygoni Multiflori Caulis and its extractive on the function of bilirubin-associated transporters were investigated in normal (N) and idiosyncratic (LPS) rats (M). The normal and LPS rats were respectively administrated powder of Ploygoni Multiflori Caulis, its extractive and same volume of 0.5% CMC-Na solution for 7 d. BSP, a substrate of the transporters of Oatp1a1 and Oatp1b2 was selected, and its pharmacokinetic parameters of intravenous injection were determined to examined the activity these transporters. Meanwhile the mRNA expressions of transporters were detected. Compared with N-blank control group, besides M-powder group, the Cmax has no significantly different from other groups, t1/2, AUC0-t and AUC0-∞ were significantly increased, and CL were significantly decreased. However, compared with N- blank control group, AST and ALT decreased significantly. The expression of Oatp1a1, Oatp1b2 and MRP2 mRNA was significantly decreased (P<0.05), but there was no act synergistically when Ploygoni Multiflori Caulis and extractive were combined with LPS. The function of Oatp1a1, Oatp1b2 and MRP2 in rats were significantly inhibited by Ploygoni Multiflori Caulis and extractive, which may be an important cause of hepatotoxicity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app